If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+1250x-18750=0
a = 5; b = 1250; c = -18750;
Δ = b2-4ac
Δ = 12502-4·5·(-18750)
Δ = 1937500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1937500}=\sqrt{62500*31}=\sqrt{62500}*\sqrt{31}=250\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1250)-250\sqrt{31}}{2*5}=\frac{-1250-250\sqrt{31}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1250)+250\sqrt{31}}{2*5}=\frac{-1250+250\sqrt{31}}{10} $
| (x-1)(x+2)(x+4)=70 | | x/2+8=3 | | 2(x-4)+8=1/2(6x+20) | | 1^2+14t=24 | | 2x+6=9x | | 3=g3-2 | | -7/3x+3/2x=-10/9 | | 5-2y=20/3 | | 2^y=y | | 1m+1/3+2/3m=43/9 | | 5-2y=62/3 | | m^2-10=13 | | 3w+7(w+5)=15 | | -3(t-4)+5t=8t-6 | | 6x+8=10-4x | | (5x+2)+6x=90 | | x^2-12x+52=25 | | s+2s+(s+3)=27 | | 6(x-2)+2x-4=8(x+2)-8 | | (2x+5)+65=90 | | -2k+1/3-11/3k=-16/3 | | 2g=4(-4=2g)=1-g | | 11(x-5)=10(x=5) | | 7+4v=-v-8 | | 2(x+4}=2(-8-x)-2x | | x2−11=14 | | 3x+15=3(x+3x15) | | -2/3-x=1/5 | | F(x)=2x^2+x-4 | | F(x)=3x3+2x^2+x-4 | | 6+2(5x-4)=9-5(2x+1) | | (5p-5)=90 |